Извилистым путём развития


В Российской Федерации действуют экологические нормы, эквивалентные европейским Евро-2. Переход отечественных заводов на производство автомобилей, удовлетворяющих данным требованиям, ознаменовался важным событием — наша страна распрощалась со старым добрым карбюратором. На мену ему пришла система впрыска топлива.

ТНВД фирмы BOSH для 12-цилиндрового авиамотора 1940 года

Однако впрыск бензина как способ подачи топлива известен давно. Конструкторы начали использовать его еще в первой половине прошлого года. Только те системы впрыска предназначались не для автомобильных моторов, а авиационных.

Вспомним, до начала реактивной эры, на летательных аппаратах за редким исключением применяли поршневые бензиновые двигатели. Более того, многие автомобильные фирмы тогда брались за производство авиамоторов. Достаточно вспомнить такие имена, как Rolls-Royce, Renault, Mercedes-Benz.

В техническом плане авиамоторы значительно опережали автомобильные, и поэтому многие конструктивные решения, ныне широко известные, появились именно на них. В их числе оказался и впрыск.

Фирма Bosch внесла большой вклад в развитие систем топливоподачи, предназначенных для автомобильной техники, и в этом деле по праву считается одним из мировых лидеров, но первый опыт по созданию инжекторных систем подачи бензина она получила именно в авиамоторостроении. Производство топливных насосов высокого давления (ТНВД) для авиации немецкая компания начала в 1937 году.

Несмотря на поражение Германии во Второй мировой войне, накопленные знания не пропали даром. В послевоенный период они пригодились автопроизводителям. Тогда немецкие автомобилисты предпочитали дешевые транспортные средства, среди которых было немало микролитражек с двухтактными двигателями. Эти автомобили действительно были не дорогими, однако чрезмерно прожорливыми, и при этом их динамические характеристики оставляли желать лучшего — много ли «лошадей» снимешь с небольшого рабочего объема мотора.   

ТНВД фирмы BOSCH для автомобиля Mercedes 220SE. 1958 год

Улучшить ситуацию попробовали с помощью системы впрыска топлива фирмы Bosch. И получили положительный результат. У автомобилей Gutbrod Superior 600 и Goliath 700 GP (цифры в индексах моделей указывают на рабочий объем в см3) на 20% возросла максимальная мощность, и на такую же величину снизился расход топлива. В 1952 году новые микролитражки поступили в продажу. Они стали первыми в мире серийными автомобилями с бензиновыми двигателями, оснащенными инжекторными системами топливоподачи.
    Это был успех, правда не дешевый.

Компоненты системы BOSC HD-Jetronik. 1967г.
Компоненты системы BOSCH KE-Jetronik 1982г.
Компоненты системы BOSCH Motronik 1986г.

Но как показал дальнейший ход событий, даже он не од смог спасти двухтактные моторы. Через несколько лет автостроители повсеместно отказались от «двухтактников» и перешли на четырехтактные конструкции.

А первый «четырехтактник» системой впрыска бензина оснастила фирма Mercedes-Benz. И здесь пригодился авиационный опыт — данная компания была одним из основных поставщиков моторов для люфтваффе. В 1954 году появилось спортивное купе Mercedes 300 SL с шестицилиндровым «движком», имевшим рабочий объем 3 л и максимальную мощность 215 л.с. Топливную аппаратуру поставила все та же фирма Bosch.

    В этих ранних конструкциях впрыска ТНВД подавал бензин к форсункам, установленным непосредственно в цилиндрах, что и определило его название — «непосредственный».

    Этапное событие в эволюции систем топливоподачи бензиновых двигателей произошло в 1967 году — автомобилистам предложили приобрести Volkswagen 1600E. Буква Е в индексе модели появилась неспроста. Она свидетельствовала о том, что на данном автомобиле нашла применение новейшая разработка фирмы Bosch — система впрыска топлива D-Jetronic. Новинка обеспечивала существенную экономию бензина и трехкратное снижение содержания оксида углерода в отработавших газах.
    Ключевыми элементами D-Jetronic стали форсунки, содержащие встроенные электромагнитные клапаны, и электронный аналоговый блок управления (контроллер), выполненный на транзисторах. Причем форсунки находились вне цилиндров и располагались так, чтобы впрыскиваемое топливо поступало в область впускных клапанов, где мелкие капельки бензина быстро испарялись. Система топливоподачи также включала электробензонасос, перепускной клапан, несколько различных датчиков и некоторые другие компоненты.

    Перенос форсунок из цилиндров во впускной коллектор позволил значительно снизить давление впрыска и тем самым избавиться от дорогостоящего и ненадежного ТНВД. В результате удалось повысить надежность системы, увеличить ее ресурс, а цена для покупателей перестала быть пугающей.
    Электробензонасос под давлением 2 бара подавал топливо к электромагнитным форсункам, которые при подаче на них от контроллера управляющего напряжения открывались и распыляли бензин. Так как давление топлива при помощи перепускного клапана поддерживалось постоянным, то его количество определялось только длительностью открытого состояния форсунки, т.е. длительностью управляющего импульса. Блок управления формировал команды в зависимости от нагрузки, частоты вращения и температуры двигателя.
    Технические решения, примененные в немецкой новинке, оказались столь удачными, что в течение нескольких десятилетий определяли направление развития систем топливоподачи. Дальнейшее совершенствование впрыска длительное время носило эволюционный характер. Ввели новые датчики, добавили антитоксичные устройства, объединили системы топливоподачи и зажигания. Алгоритм управления постоянно усложнялся, не оставалась без изменения и технология изготовления компонентов.
    Особенно быстрыми темпами прогрессировали контроллеры. На смену аналоговым пришли цифровые, а затем — и микропроцессорные. Последние функционируют в соответствии с заложенными в них программами, в то время как предыдущие блоки управления работали в зависимости от взаимного соединения составляющих их электронных компонентов. В свою очередь у микропроцессорных контроллеров быстродействие и объем памяти постоянно возрастали, так что ныне сложность реализуемого алгоритма ограничивается только способностями разработчиков.
    Все эти улучшения фирма Bosch постепенно внедряла в производство. При этом обозначения систем менялись. Название Jetronic относится только к устройствам топливоподачи, а объединенную систему, осуществляющую впрыск бензина и его зажигание, стали именовать Motronic.
    Разработки немецкой фирмы хорошо зарекомендовали себя в эксплуатации и стали эталонными. На них ориентировались другие компании, создавая свои собственные конструкции.

Продолжения не имели

Однако у D-Jetronic нашлись и противники. Они считали электронные устройства ненадежными и предпочитали им чисто механические. А с мнением потребителей не считаться нельзя. И для них фирмой Bosch в 1973 году была создана система топливоподачи K-Jetronic.
    В ней основным элементом стал дозатор-распределитель, соединенный с механическим датчиком потока воздуха. Топливо к дозатору-распределителю подавалось лектробензонасосом, а от него поступало к форсункам, установленным во впускных каналах. Дальнейшее улучшение механического впрыска стало возможным благодаря… электронике (KE-Jetronic, 1982 год), но при этом его главное преимущество, т.е. отсутствие электроники, оказалось потерянным. Поэтому в новые разработки он уже не закладывался.

Система управления двигателя фирмы Siemens (конец 80-х годов)

Замена карбюратора на электронную систему впрыска требовала значительной переделки двигателя, да и цена заметно подскакивала. Поэтому была предложена другая конструкция, которая содержала только одну форсунку, обеспечивающую топливом все цилиндры. Она получила название центральный (или одноточечный) впрыск. При этом предыдущий вариант стали именовать распределенным (или многоточечным).
    Центральный впрыск разработала фирма Bosch, которая начала производство Mono-Jetronic в 1986 году. Затем появился Mono-Motronic, а позднее — Motronic MA.

Особенностью одноточечного впрыска является то, что его блок топливоподачи устанавливают на место карбюратора с минимальными переделками. Форсунку располагают над дроссельной заслонкой, которая имеет повышенную частоту срабатывания и увеличенную подачу топлива. Давление впрыска — примерно 1 бар.

    К сожалению, один из основных недостатков карбюратора, а именно невозможность равномерно распределять топливо по цилиндрам, сохраняется и здесь. Поэтому на двигателях уровня Евро-3 и выше центральный впрыск уже не использовали.

Возврат к старому

В конце 80-х годов прошлого века у моторостроителей начались тяжелые времена — экологическое законодательство многих стран стало планомерно ужесточаться. Кроме того, расход топлива для покупателей превратился в один из основных эксплуатационных показателей. Стало ясно — необходимы новые идеи, новые технические решения. И они нашлись. Вернее - вспомнили о забытых старых. Форсунки снова вернули в цилиндры. Естественно, понадобились и ТНВД, но это уже не страшно - конструкторы научились делать их надежными.

Форсунка EV 10 системы центрального впрыска фирмы BOSCH

Форсунка EV 4A системы распределительного впрыска фирмы BOSCH

Возврат форсунок на первоначальное место в сочетании с электронным управлением позволил успешно реализовать другую старую идею -послойного смесеобразования. В данном случае топливовоздушная смесь внутри цилиндра должна быть неоднородной — по мере удаления от свечи зажигания она меняется от стехиометрической до практически чистого воздуха около стенок цилиндра. При этом обеспечивается ее надежное воспламенение, а тепловые потери уменьшаются. Кроме того, повышается детонационная стойкость, значит, можно увеличить степень сжатия или перейти на более дешевый низкооктановый бензин. Но и это еще не все. Возрастает расход воздуха, а это требует большего открытия дроссельной заслонки, что в свою очередь снижает насосные потери.

Пьезофорсунки DI-Motronic второго поколения BOSCH для автомобиля Mercedes CLS 350 CGl

Двигатель автомобиля Mercedes CLS 350  CGl
Таким образом, выгод от использования послойного смесеобразования немало. Длительное время его пытались  реализовать при наружном расположении    форсунок и даже выпускали например, такие двигатели, как 4A-FE и 7A-FE в версии Lean Burn фирмы Toyota. Экономия топлива по сравнению с обычными вариантами этих моторов составляла около 10%, токсичность отработавших газов снижалась, но при этом несколько уменьшалась и максимальная мощность.
Переход на электронный непосредственный впрыск сулил еще больше благ — можно применять более бедные смеси, не говоря уже о том, что бензин, испаряясь внутри цилиндра, создает эффект интеркулера. В разработке идеи на этот раз вперед вырвались японские фирмы. В 1995 году компания Mitsubishi начала производство двигателей GDI (GasolineDirect Injection), а через год появились моторы Toyota D4. Немецкая Bosch отстала от японцев на несколько лет. Только в 2000 году представили Volkswagen Lupo FSI с топливной аппаратурой Bosch DI-Motronic. А через год ее установили и на Volkswagen Golf FSI. У этих автомобилей ТНВД нагнетает бензин в топливную магистраль, по которой он поступает к электромагнитным форсункам. Давление может достигать 120 бар. Момент впрыска и его длительность определяются контроллером.

Компоненты системы DI Motronic второго поколения фирмы BOSCH

Форсунки высокого давления имеют повышенное быстродействие, что позволяет получить малое время впрыска, особенно на холостом ходу, когда оно составляет менее 0,5 мс. Это в 5 раз меньше, чем у обычных форсунок для подачи топлива во впускные каналы. Бензин хорошо распыляется, его капли имеют размер в среднем менее 20 мкм, т.е. в 5 раз меньше, чем при традиционном впрыске. Кроме того, форсунки обеспечивают необходимую форму факела распыла. Состав смеси измеряется широкодиапазонным лямбда-зондом LSU, установленным перед каталитическим нейтрализатором.

Система управления DI-Motronic обеспечивает работу двигателя в трех режимах: с послойным смесеобразованием, на стехиометрической и обогащенной смесях. В первом случае коэффициент избытка воздуха может изменяться от 1,5 до 3, впрыск бензина происходит незадолго до момента зажигания в такте сжатия. Экономия топлива на холостом ходу, по данным фирмы Bosch, может достигать 40% по сравнению с обычной инжекторной системой.

С ростом нагрузки подача топлива увеличивается, а коэффициент избытка воздуха уменьшается. При определенной нагрузке происходит переход на стехиометрический состав. Теперь впрыск происходит рано, во время такта впуска, что позволяет хорошо перемешать смесь. При этом на 5% обеспечивается рост крутящего момента. Третий режим работы двигателя рассмотрим чуть позднее.

Применение DI-Motronic в среднем позволяет получить экономию топлива до 15% при измерении по европейскому ездовому циклу.
Кроме плюсов электронный непосредственный впрыск имеет и минусы. Одной из проблем является нейтрализация отработавших газов. При работе на сильно обедненной смеси получается мало угарного газа и несгоревших углеводородов, зато много оксидов азота, при этом эффективность обычного трехкомпонентного каталитического нейтрализатора резко падает.

Выход из создавшейся ситуации нашелся  следующий. Во-первых, рециркуляция отработавших газов позволила снизить количество возникающих оксидов азота примерно на 70%. А во-вторых, применили дополнительный накопительный каталитический нейтрализатор, который на своей поверхности удерживает оксиды азота в виде нитратов. Однако емкость такого нейтрализатора ограничена. Когда он заполняется, необходима его регенерация (очистка). Для этого и предназначен третий (обогащенный) режим работы двигателя с коэффициентом избытка воздуха 0,8.

Последние достижения

В прошлом году фирма Bosch начала выпуск топливной аппаратуры DI-Motronic второго поколения. В ней применяют компактный ТНВД HDP5 и два типа форсунок — электромагнитная HDEV5 c улучшенным распылением или пьезоэлектрическая HDEV4. Давление впрыска достигает 200 бар. Впервые новая аппаратура была установлена на Mercedes CLS 350 CGI.

Наиболее «продвинутой» системой топливоподачи в настоящее время оснащаются автомобили компании Lexus, являющейся подразделением уже знакомой нам Toyota. Это комбинированный (или двойной) впрыск. Каждый цилиндр двигателя имеет по две форсунки. Одна из них подает бензин во впускной канал, а другая — в цилиндр. В этой разработке японские специалисты сумели объединить преимущества распределенного и непосредственного впрысков. Такая система применяется на V-образном 6-цилиндровом 3,5-литровом двигателе гибридного автомобиля Lexus GS450h.

Работы по дальнейшему совершенствованию бензиновых двигателей интенсивно ведутся во всем мире. На опытных образцах испытывают и доводят до ума новые идеи. Среди них такие, как возврат к «двухтактникам», сочетание в одном моторе двухтактного и четырехтактного циклов (выбор осуществляется в зависимости от режима), создание гибрида дизеля и мотора «Отто». Последнее направление поиска особенно интересно, им занимаются специалисты Mercedes-Benz.

Упомянутый гибрид (фирменное название DisOtto) потребляет бензин и при полной нагрузке работает как обычный двигатель с искровым зажиганием, однако при малой нагрузке воспламенение топливовоздушной смеси осуществляется за счет сжатия. А новые моторы требуют и новых систем топливоподачи.

И в заключение вспомним, что с 1 января 2008 года в соответствии со специальным техническим регламентом «О требованиях к выбросам автомобильной техникой, выпускаемой в обращение на территории Российской Федерации, вредных (загрязняющих) веществ» в нашей стране вводят в действие экологические нормы Евро-3. А это повлечет за собой модернизацию систем управления двигателями отечественных автомобилей и некоторое повышение их цены. Однако чистый воздух стоит этих дополнительных затрат.

Статья подготовлена по материалам журнала «Новости авторемонта»

К списку статей

Сайт rustehnika.ru носит исключительно информационный характер и не является публичной офертой. Уточняйте актуальные цены у менеджеров ГК "РусТехника"
8-800-301-0675
Многоканальный телефон
Время работы: МСК 9:00–18:00

Кострома:

(915) 909-25-25

Иваново:

(915) 838-86-46

Череповец:

(911) 505-45-60

Москва:

(495) 764-92-90

Краснодар:

(861) 247-35-64

Екатеринбург:

(982) 717-08-91

Казань:

(843) 297-99-94

Белгород:

(980) 386-20-07
8-800-301-0675 info@rustehnika.ru
+7 (910) 812-40-04